
Simulating a Real-World Taxi Cab Company using a Multi Agent-Based Model

Matz Johansson Bergström
Department of Computer Science

Göteborgs Universitet
Email:matz.johansson@gmail.com or matz.johansson@chalmers.se

1

8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

LIMY

Start Node
End Node

Customer:

Cab:
Idle
Driving to customer
Driving customer

Figure 1: A screenshot of the Taxi Simulator. The taxi cabs are indicated by color depending on their status. The zones are colored in a
pattern so they are easier to see.

Abstract

In this article we propose a novel multi-agent approach to simulate
the behavior of a real-world taxi cab company. The focus of this
article is to minimize the number of bailed customers by examining
other rules and compare their performance to the existing system.

With our proposed rules we reduce the number of bailed customers,
on average, by 40% and as a result of this, we reduce the waiting
time also on average by 40%.

Keywords: Multi-agent, simulation, taxi system

1 Introduction

OBS: If not otherwise stated, all assumptions and data were gath-
ered from a current employee of Taxi Göteborg.

Taxi systems are governed by a dispatch system, communicating
and assigning customers to cabs.

The cab company we simulate is Taxi Göteborg. Their dispatch
system works by following a set of rules to assign taxi cabs to cus-

tomers based on a zone partitioning scheme of the city of Gothen-
burg (see Figure 2). Cabs are tracked using GPS and as soon as a
cab enters a zone it is queued in that zone.

Figure 2: The Zone partitioning of Gothenburg, courtesy of Taxi
Göteborg. Note that the area of individual zones is changing with
the distance to the center of the city.

We believe that the most important aspect of the dispatch system is
the presence of bailed customers. If a customer is assigned a cab, it
is not obligated to drive with that cab. If the customer find another
cab, it is very common that it will drive off with the other cab.

As seen, using real data, this probability tend to increase over time.

Most of our approximations are built using first-hand information
from a current employee at Taxi Göteborg. On average, 10% of the
customers during one session will bail on a cab.

Although the exact details of how the dispatcher system works is
not readily available to the public, we managed to get enough in-
formation and estimates to build a simulation producing plausible
outputs.

The simulation model is used to test different dispatch rules and
to evaluate their performance with respect to minimizing service
objectives (see next section).

The objective to reduce waiting time in customers is even more im-
portant today because of the increase of competing cab companies.
In recent years, several taxi companies has emerged, such as Taxi
Kedjan, Taxi Kurir, Mini Taxi, Easy Cab (flygtaxi) [pri]. The addi-
tional competition makes it more important that the dispatch system
is efficient.

1.1 Background

Taxi Göteborg use a set of internal rules to dispatch cabs to their
customers. Since the early 2000, the prevalence of mobile phones
has increased. As a result, the calls to the taxi cab dispatch are
mostly made outdoors. Because of this, the customers are visible
to other cabs which greatly increases the possibility of a customer
fetching another cab, instead of waiting for the designated one.

Taxi Göteborg prior to circa 2000 did not use GPS. Because of this,
the chauffeurs had to type in the zone they were in via a computer
each time they entered a zone. This system made it possible for the
chauffeurs to cheat and enter a more popular zone, giving them a
better position and to “play the odds”. Today, this is impossible due
to the introduction of the GPS. The chauffeurs are left in the hands
of the dispatch system.

We believe that due to this shift of power from taxi company to
customers, Taxi Göteborg needs a more efficient dispatch system,
reducing the customer waiting time.

We also need to take into account that the number of cabs from
rivaling companies also has increased in the last couple of years.
The perception may be that Taxi Göteborg give their employees
a fixed salary, which is false, making the customer less likely to
notice if the company it calls to is the same as it leaves with.

This is at the core of the simulation, showing that the dispatch sys-
tem is not well-suited for the fast moving IT solutions of tomorrow.

2 Related work

Much research on dispatch modeling and simulation are focused on
frameworks and generic dispatch policies. Many papers are cover-
ing advanced techniques such as [Aamena Alshamsi and Rahwan
2009]. In [Aamena Alshamsi and Rahwan 2009] they propose a
self-organization technique to change the shape of the dispatch ar-
eas as the density of traffic changes. This is however outside of the
scope of this article.

In [Krishnan 2008] they simulate a dispatch system written in
Python. The simulation aims to reduce the waiting time of cus-
tomers using vehicle anticipation. The anticipation method is im-
portant because this will place the cab where the customer is likely
to be, before the customer shows up. However their paper does not
simulate bailing customers, see page 14 in [Krishnan 2008], which
is what we want.

However, in our research we will not take customer anticipation
into consideration.

Another detail that [Krishnan 2008] does is to use identical cities
when comparing performance of the simulation. We adopted this
idea and in our simulation we create a list of customers with their
positions and run the simulation with that same list for all consecu-
tive tests (not when we change hotspot).

As far as we know, no paper has created a simulation using hotspots
and bailing customers.

In the next section we will briefly cover the way we created the city
on which we simulate on.

3 The City

In our simulation we create a city as a lattice, or a regular grid of
nodes. To break up symmetries we have removed edges, according
to the following simple construction rules:

1. The perimeter of the city has edges around.

2. For each node we place at least two adjacent edges.

It is easy to see that these two rules guarantee that the city will never
create islands of nodes that cannot be reached.

Because the grid is regular, we can effectively store the distances as
a sparse matrix. In our simulation the number of nodes is 151, each
edge is 50 meters (7.5 km across).

To approximate the city zone partitioning (see Figure 2), we use a
grid to divide the city, as in Figure 3. We believe this approximation
is relatively accurate because the density of customers will be the
same for the smaller zones (near city core) as the large zones (in the
outer limits).

0 50 100 150
0

50

100

150

1

8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

24

Figure 3: Visualization of the city using 22801 nodes and par-
titioned into 49 equally sized zones. The zoomed in zone shows
the individual edges. Please note that some edges are intentionally
missing.

We do not believe that the size of the city is important, as long as
the cab speed and customer waiting times are comparable to our
real-world data.

The next section will show all the approximations and omissions
and some arguments for them.

4 Approximations

The following are approximations used in the project to make it
computationally feasible. We believe these extra details do not add
any extra information that affect the outcome of the simulation in
any significant way.

1. Traffic lights are ignored

2. Uniform distribution of customers’ start cites

3. Cars can drive through each other

4. Unlimited gas

5. All cars drive at the same speeds (35km/h)

6. No one-way streets

7. Each cab knows the shortest distance between any points

8. A customer will be ready for a cab when it calls

The first item is more of an optimization. If we agree that traffic
lights are more of less random and since they affect all the cabs
in the simulation there should be no difference if we remove them
from the simulation as they will be cancelled out after many runs of
the simulation anyway.

The start coordinates are uniformly randomly distributed. For some
tests however, where we wish to model high flow of customers we
use so called hotspots. In these places the probability that a cus-
tomer is driving from and/or to is increased, which we will see next.

4.1 Simulating customer behavior

According to our statistics, the travel distances are gamma dis-
tributed. Practically, this means that a distance is generated from
a gamma distributed random function, see Figure 4. The histogram
was created using over 350 samples.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140
Real travelling distance with customer

Distance (km)

F
r
e
q
u
e
n
c
y

Figure 4: Histogram of distances driven with customers. Note the
characteristic tail to the right as far distances are less likely to oc-
cur.

In our simulation we base our customers’ choice of destination on a
gamma distribution. We first pick a gamma distributed random dis-
tance, and collect the nodes at this distance. We will also simulate
the way a popular starting and target node (we call this a “hotspot”)
affect the results. In our simulation we have chosen a hotspot at the
actual center of the city, where the distribution of shopping malls
are high and people are likely to travel to and from.

We can control the probability of customers spawning from the
hotspot by setting a variable we call “source” and the target is con-
trolled by the “sink”. In Figure 5 we can see the frequency of the
target nodes given different source and sink probabilities.

As the probability of the hotspot changes, we get different patterns
of frequency where the customers end up. This knowledge might
be interesting in customer anticipation.

Especially notice the diamond shape created when source = 1. The
reason we do not get a round shape is because of how we mea-
sure distance on a grid. The distance function on a grid is populary
called “taxi distance” or “taxi norm”. In our simulation we can-
not compute distance using the taxi norm, because some edges are
removed.1

Source

Sink

0 1

0

1

Figure 5: Four renders of the frequencies of the nodes of the city
where customers wish to travel to (sink), using the hotspot idea.
The pixels might be difficult to discern from the background so we
added some dashed lines.

As said before, a cab driver will, on average, get 10% bailed cus-
tomers. This information is also based on real data. As we will see
later, our simulation will also produce about 10% bailed customers
for the Taxi Göteborg rule.

4.2 Simulating chauffeur behavior

In order to simulate the behavior of the chauffeurs accurately, we
introduce a set of rules

Spreading behavior: If a cab is in a zone with more than 5 cabs
ahead of him and another zone will give the cab a better placement,
the cab will drive to that zone after 10 minutes. This rule is a mod-
ification of a real-world rule where you might wait 30 minutes.

Chauffeurs are able to see which position it is in the current zone
and also via a computer system which gives the number of cabs in
other zones.

Deny customer: If a customer is too far away, the cab will deny the
customer.

Bail punishment In the event that a customer bails on a cab, the
chauffeur must wait. The waiting time depends on whether the cus-

1In earlier versions of the simulation we also planned on adding one-way
streets, which affects the distance patterns.

tomer has a mobile phone or not. based on statistics, a customer is
accessible via mobile phone in 70% of the time. The other 30% the
chauffeur must wait 10 minutes as per Taxi Göteborg rules.

5 The code and problems encountered

The simulation was written in Matlab and works by stepping in
time. For our simulation the granularity is 1 second.

The management of cabs, customers and queues is controlled using
three matrices we call C (customer), T (taxi), Q (queue). T and
C contains a time entry when they are supposed to make the next
decision. For a cab, a decision is made when it arrives to the cus-
tomer, to see if the customer jumped in another cab or not. The
customer will also make decisions, such as call the dispatch if no
cab is present at the moment.

The customer matrix C is reused when a customer has been taken
care of, therefore it is important to place the information about a
customer within T and not C. If a customer i is assigned a cab Ci

and instead bails with cab Cj . Additionally, Ci might be so far
away that Cj drives customer i to its destination before Ci arrives
to the customer. In this case the customer entry i will be erased, or
written over with the next customer (modulo size of C).

Our first approach was to create a city that was truly random, to
be able to simulate specific scenarios using a completely new city
for each simulation. Because we did not add direction of edges
(to simulate one-way streets) we discarded both ideas due to time
constraint. We are not convinced that these details would make any
difference.

6 Experimental Results

The results are presented using graphs of the performance. We use
the same ideas as in [Krishnan 2008], testing waiting time for cus-
tomers, and idle driving (without customer). In our tests we also
use the quantity of missed customers. The first set of tests was con-
ducted using identical spawning of the customers. This makes the
results easier to interpret, because the graphs are more stable.

Additionally, for the GBG (Taxi Göteborg) rule, we also noticed
that the average number of missed customers is around 11%, com-
parable to the real-world data.

In all our tests we add a steady flow of customers. We use one cus-
tomer per 43 seconds, which seem to work well for our purposes.
We have no data on how customers call the dispatch. The cus-
tomers may contact Taxi Göteborg via telephone or their homepage
in bursts, instead of them being uniformly distributed over time, as
we assume. Maybe the customer spawning could be successfully
modeled using a Poisson process. We simply do not know the way
the customers are spawned, but we believe our approximation suf-
fices for this simple simulation.

In the following figures we ran the simulation with a variable num-
ber of cabs using the three rules:

1. GBG rule (Taxi Göteborg),

2. Rule 1 (closest cab)

3. Rule 2 (cab is given priority in queue after miss)

We wish to minimize the customer waiting time, but at the same
time we also wish to minimize the number of cabs in the system.

In Figure 6 we can see the idle driving time, when the cabs drives
around and looks for customers. The distance is linearly scaled

due to the way the simulation calculated the stepping distance. The
comparison between the distance will still be valid.

10 20 30 50 70 100
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
x 105 Idle driving

Number of cabs in system

D
i
s
t
a
n
c
e

(
s
c
a
l
e
d

u
n
i
t
s
)

GBG rule

Rule 1

Rule 2

Figure 6: The idle driving increase as the number of cabs increase
in the system.

By increasing the number of cabs in the system we would expect
the total waiting time for all the customers to decrease as can be
seen in Figure 7. Note the logarithm in the y axis.

10 20 30 50 70 100

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8
Customer waiting time

Number of cabs in system

T
i
m
e

l
o
g
1
0(
s
)

GBG rule
Rule 1
Rule 2

Figure 7: This simulation show that the priority rule (Rule 2) and
the GBG rule outputs the same performance.

The most important difference between the rules are the total num-
ber of missed customers, which we wish to minimize. As we in-
crease the number of cabs, the number of missed customers will in-
crease substantially using GBG rules and Rule 2. It is interesting to
note that the idle time for all methods (as can be seen in Figure 6)
are nearly the same, but the number of missed customers (hence
punishment) differs greatly between GBG rule and rule 1. So, the
idle time is reduced greatly for both Rule 1 and GBG rule, but be-
cause the cab spawning rate is as low as it is, the cabs will drive and
look for a customer during the time it would get a punishment.

Based on the above figures, we choose to use 50 cabs for all subse-
quent simulations.

10 20 30 50 70 100
0

50

100

150

200

250

300

350
Occurance of missed customers

Number of cabs in system

M
i
s
s
e
d

c
u
s
t
o
m
e
r
s

GBG rule

Rule 1

Rule 2

Figure 8: We clearly see the difference in performance between our
proposed Rule 1 and the other rules.

In Figure 9, we see that the customer waiting time, using the GBG
rule, is also gamma distributed. We believe this result is an example
of that the simulation and our assumptions are relatively sound and
reliable.

0 100 200 300 400 500 600 700
0

50

100

150
Customer waiting time

time (s)

O
c
c
u
r
a
n
c
e

Figure 9: Histogram of the Waiting time.

The next simulations are focusing on increasing hotspot probabil-
ities. In Figure 10, we can see how the changing of the hotspot
probability affect the outcome of the simulations using the different
rules.

Rule 1 performs very well for all cases.At one point source=1
sink=0 all the methods coincide. We can clearly see a pattern as
we increase the hotspot sink value. As the source probability is in-
creased, using GBG rule, the number of customers decrease. Rule
1 performs very well for all cases but when source and sink is 1.

For the next two figures, Figure 11 and Figure 12, the performances
are bascially equal. As expected, Rule 2 performs poorly, compared
to Rule 1, as the figures show.

The conclusion is that the Rule 1 reduces the time customers need
to wait and also reduces the number of missed customers on average

20

40

60

80

100

120

140

160

180

200

N
u
m
b
e
r

o
f

c
u
s
t
o
m
e
r
s

Occurance of missed customers

GBG rule
Rule 1
Rule 2

Source: 0 0 0 0.5 0.5 0.5 1 1 1
Sink: 0 0.5 1 0 0.5 1 0 0.5 1

Figure 10: We can see that the number of missed customers are
reduced greatly if we use the shortest distance (Rule 1).

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8
x 105

D
i
s
t
a
n
c
e

(
s
c
a
l
e
d

u
n
i
t
s
)

Idle driving

GBG rule

Rule 1

Rule 2

Source: 0 0 0 0.5 0.5 0.5 1 1 1
Sink: 0 0.5 1 0 0.5 1 0 0.5 1

Figure 11: The distance (scaled) of idle driving is very similar to
the figure of waiting times. We see that for source=1 we get an
increase of the total amount of idle driving.

by 40%.

7 Discussion and Conclusion

In this article we proposed a novel simulation algorithm based on
a multi-agent system that simulate Taxi Gothenburgs dispatch sys-
tem. We showed that using our rules will reduce both customer
waiting time. By also adding a hotspot, we showed that in a
crowded environment the current rules handles the increase of flow
in a poor manner, and that the proposed method would decrease
both time and missed customers by an average of 40%. The rules
we suggested show that in a hotspot situation they are bascially the
same. Additionally, we assume that the customers are added into
the system at regular intervals, but it is probably more realistic that
the customers are generated at random and they are also dependent.

The idle driving, Figure 6, should be the same, because the cus-
tomers are all the same in all those simulations. The distance is
computed using scaled distance units computed using the elapsed

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 105

T
i
m
e

(
s
)

Customer waiting time

GBG rule

Rule 1

Rule 2

Source: 0 0 0 0.5 0.5 0.5 1 1 1
Sink: 0 0.5 1 0 0.5 1 0 0.5 1

Figure 12: This graph only confirms that the frequency of missed
customers and the customer waiting time is linked.

time to drive the customer. According to the figure, the distance
difference is 5000 (m), for each cab this amounts to a discrepancy
of 100 m for 12 hours of simulation. We believe this is due to a
numerical rounding bug in the simulation.

8 Future Work

We believe that our simulation would benefit from additional de-
tailed statistical data, such as real customer flow and customer
movement while waiting on a cab.

In this report we only compare one cab company, but we believe
that statistical data and dispatch rules from competing companies
needs to be added to the simulation to increase reliability and accu-
racy of the results.

Acknowledgements

We would like to thank [anonymous] for the data provided and
general help with the way Taxi Göteborg dispatch cabs, details on
queueing and the statistical intuition needed.

We would also like to thank our supervisor Claes Andersson for
feedback and the “hotspot” idea.

References

AAMENA ALSHAMSI, S. A., AND RAHWAN, I. 2009. Multi-
agent self-organization for a taxi dispatch system. Tech. rep.,
International Foundation for autonomous agents and multiagent
systems.

KRISHNAN, S. 2008. Simulation on service vehicle dispatching.
Tech. rep., Department of mechanical and Industrial Engineer-
ing, University of Toronto.

Taxipriser i goteborg. http://taxipriser.se/
bolag-i-goteborg.html. Accessed 21 Dec 2012.

http://taxipriser.se/bolag-i-goteborg.html
http://taxipriser.se/bolag-i-goteborg.html

